Surface modification of silicon and polydimethylsiloxane surfaces with vapor-phase-deposited ultrathin fluorosilane films for biomedical nanodevices

نویسندگان

  • Bharat Bhushan
  • Derek Hansford
  • Kang Kug Lee
چکیده

Ultrathin coatings of fluorosilane films for silicon and polydimethylsiloxane PDMS nanochannels are desirable to control the hydrophobicity of the surface and reduce or prevent undesired protein adsorption or cell interactions critical for the performance of most biomedical micro/nanodevices. Surface modifications using vapor-phase deposition become increasingly important for some biomedical nanodevices and have advantages over liquid-phase deposition since the vapor phase can permeate more efficiently into silicon nanochannels. In this study, vapor-phase deposition was used to deposit ultrathin films of four fluorosilanes on silicon and PDMS and identify deposition conditions for an optimal process. The films were characterized by means of a contact angle analyzer for hydrophobicity, an ellipsometer for film thickness, and an atomic force microscope for surface roughness of these films. Results of this study and relevant mechanisms are the subject of this article. © 2006 American Vacuum Society. DOI: 10.1116/1.2167077

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanotribological characterization of fluoropolymer thin films for biomedical micro/nanoelectromechanical system applications

A vapor phase deposition system was designed to coat uniform, conformal and ultrathin coatings of fluoropolymer and fluorosilane thin films inside silicon nanochannels. Surface modifications using vapor phase deposition become increasingly important for biomedical micro/nanoelectromechanical system BioMEMS/NEMS applications and have advantages over liquid phase deposition since the vapor can pe...

متن کامل

Morphological, structural and photoresponse characterization of ZnO nanostructure films deposited on plasma etched silicon substrates

ZnO nanostructure films were deposited by radio frequency (RF) magnetron sputtering on etched silicon (100) substrates using dry Ar/SF6 plasma, at two etching times of 5 min and 30 min, and on non etched silicon surface. Energy dispersive X-ray (EDX) technique was employed to investigate the elements contents for etched substrates as well as ZnO films, where it is found to be stoichiometric. Su...

متن کامل

محاسبه سطح مشترک (111)Pb/Si با استفاده از نظریه تابعی چگالی

  Work function and surface energy per unit area were calculated in the framework of density functional theory (DFT) with Linearized A ug mented Plane Wave Plus Local Orbital method in full potential for a clean symmetric slab of silicon containing two (top and bottom) surfaces. The surfaces were theoretically modeled using supercell technique by stacking a variety of silicon layers along (111)...

متن کامل

Facile plasma-enhanced deposition of ultrathin crosslinked amino acid films for conformal biometallization.

A novel method for the facile fabrication of conformal, ultrathin, and uniform synthetic amino acid coatings on a variety of practical surfaces by plasma-enhanced chemical vapor deposition is introduced. Tyrosine, which is utilized as an agent to reduce gold nanoparticles from solution, is sublimed into the plasma field and directly deposited on a variety of substrates to form a homogeneous, co...

متن کامل

Conductive Polythiophene Nanoparticles Deposition on Transparent PET Substrates: Effect of Modification with Hybrid Organic-inorganic Coating (RESEARCH NOTE)

In this work, Poly(ethyleneterephthalate) (PET) substrate was treated using KOH solution and was modified using hybrid O-I coating containing PCL )polycaprolactone( as organic phase and TEOS )tetraethoxysilane( as inorganic phase. The coating was prepared through a sol-gel process and applied on the surface by dip coater. Then, electrically conducting polythiophene (PTh) nanoparticles were depo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006